The Local Ginzburg-rallis Model over Complex Field

نویسنده

  • CHEN WAN
چکیده

We consider the local Ginzburg-Rallis model over complex field. We show that the multiplicity is always 1 for a majority of the generic representations. We also have partial results on the real case for general generic representations. This is a sequel work of [Wan15] and [Wan16] on which we considered the p-adic case and the real case for tempered representations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On automorphic sheaves on BunG

Let X be a smooth projective connected curve over an algebraically closed field k of positive characteristic. Let G be a reductive group over k, γ be a dominant coweight for G, and E be an l-adic Ǧ-local system on X , where Ǧ denotes the Langlands dual group (over Q̄l). Let BunG be the moduli stack of G-bundles on X . Under some conditions on the triple (G, γ,E) we propose a conjectural construc...

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

On the geometric Langlands conjecture for symplectic and odd orthogonal groups

This is an attempt to formulate a geometric Langlands conjecture for G = GSpin2n+1 and GSp2n, n ≥ 1. Namely, let Ǧ be the Langlands dual group (over Q̄l), let X be a smooth projective connected curve. Given a Ǧ-local system E on X , assuming some irreducibility type conditions on VE for some representations V of Ǧ, we propose a conjectural construction of a distinguished E-Hecke automorphic shea...

متن کامل

Estimation of Source Location Using Curvature Analysis

A quadratic surface can be fitted to potential-field data within 3×3 windows, which allow us to calculate curvature attributes from its coefficients. Phillips (2007) derived an equation depending on the most negative curvature to obtain the depth and structural index of isolated sources from peak values of special functions. They divided the special functions into two categories: Model-specific...

متن کامل

Generalized Harish-chandra Descent, Gelfand Pairs and an Archimedean Analog of Jacquet-rallis’ Theorem Avraham Aizenbud and Dmitry Gourevitch

In the first part of the paper we generalize a descent technique due to Harish-Chandra to the case of a reductive group acting on a smooth affine variety both defined over an arbitrary local field F of characteristic zero. Our main tool is the Luna Slice Theorem. In the second part of the paper we apply this technique to symmetric pairs. In particular we prove that the pairs (GLn+k(F ),GLn(F ) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016